Astrometry |
A detailed description of the astrometric calibration is given in Pier et al. (2003) (AJ, or astro-ph/0211375). Portions of that discussion are summarized here, and on the astrometry quality overview page. The r photometric CCDs serve as the astrometric reference CCDs for the SDSS. That is, the positions for SDSS objects are based on the r centroids and calibrations. The r CCDs are calibrated by matching up bright stars detected by SDSS with existing astrometric reference catalogs. One of two reduction strategies is employed, depending on the coverage of the astrometric catalogs:
The r CCDs are therefore calibrated directly against the primary astrometric
reference catalog. Frames Each drift scan is processed separately. All six camera columns are processed in a single reduction. In brief, stars detected on the r CCDs if calibrating against UCAC, or stars detected on the astrometric CCDs transformed to r coordinates if calibrating against Tycho-2, are matched to catalog stars. Transformations from r pixel coordinates to catalog mean place (CMP) celestial coordinates are derived using a running-means least-squares fit to a focal plane model, using all six r CCDs together to solve for both the telescope tracking and the r CCDs' focal plane offsets, rotations, and scales, combined with smoothing spline fits to the intermediate residuals. These transformations, comprising the calibrations for the r CCDs, are then applied to the stars detected on the r CCDs, converting them to CMP coordinates and creating a catalog of secondary astrometric standards. Stars detected on the u, g, i, and z CCDs are then matched to this secondary catalog, and a similar fitting procedure (each CCD is fitted separately) is used to derive transformations from the pixel coordinates for the other photometric CCDs to CMP celestial coordinates, comprising the calibrations for the u, g, i, and z CCDs. Note: At the edges of pixels, the quantities objc_rowc and objc_colc take integer values. |